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We define and characterize a new abstract notion of "quasiBoolean algebra," 
intermediate in nature between an (ortho)lattice and a Boolean algebra. It will turn 
out that such algebras are natural candidates for representing the simultaneously 
definite properties of a quantum system. We then prove a general theorem about 
maximal quasiBoolean subalgebras of an ortholattice which we use to derive a 
number of different proposals in the literature for what properties of a quantum 
system should be regarded as simultaneously definite. 

1. I N T R O D U C T I O N  

There are a number of  different proposals in the literature for what 
observables of a quantum system should be taken to have simultaneously 
definite values. "Orthodox" proposals include those which limit the properties 
one may ascribe to a quantum system to those which can either be predicted 
with certainty given the state of  the system (von Neumann, Dirac), or those 
properties whose values get strictly correlated to the pointer values of a 
classically described measurement device (Bohr). "Nonorthodox" proposals 
include hidden variable interpretations of  the theory that regard certain observ- 
ables of  a quantum system, like position, as always having definite values 
(Bohm), and "modal"  interpretations that, though they do not posit (nontriv- 
ial) observables with always definite values, still seek to attribute properties 
so that macroscopic systems in entangled states, like SchrOdinger's cat, never- 
theless retain sufficient properties to ensure that classical everyday perceptions 
are not contradicted (van Fraassen, Kochen, Dieks). 

It is not our purpose to advocate any one of these proposals here, but 
rather to point out that they all share a common structural feature: namely, 
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that the different property sets these proposals embody all form what may 
naturally be called "quasiBoolean algebras." 

Our aim is first to introduce and characterize the new lattice-theoretic 
concept of quasidistributivity, the weakened form of distributivity that will 
play a central role in our analysis. To this end, in Section 2 we briefly review 
the elements of lattice theory necessary for our formulation and analysis of 
the concept of quasidistributive lattice. Then in Section 3 we will prove a 
theorem characterizing such lattices in terms of four different, but equivalent, 
conditions. There is also a natural notion of "strongly quasidistributive lattice" 
that emerges, and again we prove a theorem characterizing such lattices, this 
time in terms of five equivalent conditions. 

In Section 4 we confine attention to ortholattices, and introduce the term 
(strongly) quasiBoolean algebra for a (strongly) quasidistributive ortholattice. 
It will turn out that all the proposals mentioned above realize strongly quasi- 
Boolean algebras in this sense, though we will show that the requirement that 
the set of definite properties of a quantum system form merely a quasiBoolean 
algebra has a more direct physical motivation in the context of Hilbert space 
quantum mechanics. In order to employ the idea of a quasiBoolean algebra 
to recover different proposals for the set of definite properties of a quantum 
system, we shall prove in Section 4 a general theorem about a class of 
quasiBoolean algebras obtainable as maximal subalgebras of an ortholattice. 
We then show in Section 5 how such algebras emerge as the natural mathemat- 
ical objects for representing the set of definite properties of a quantum system. 

Finally, in Section 6, we use our general theorem of Section 4 to derive 
all the different proposals mentioned above; for it turns out that they all 
represent the definite properties of a quantum system in terms of a maximal 
quasiBoolean subalgebra of the ortholattice of subspaces of the Hilbert space 
representing the system. This result should go some way toward separating 
the purely mathematical from the physical content of these proposals, helping 
to clarify their essential differences. In fact, we shall see that the proposals 
differ physically only in regard to what the atoms of the maximal quasiBoolean 
subalgebra they select should be taken to be. Once these are fixed, the 
theorem of Section 4 (which does not depend on Hilbert space) determines 
the subalgebra selected by each proposal uniquely. 

2. FILTERS, IDEALS,  AND H O M O M O R P H I S M S  

We begin with our brief review of the elements of lattice theory needed 
to characterize quasidistributive lattices. 

Let L be a lattice with bottom element 0 and top element 1; we shall 
always assume 0 ~ 1. A nonempty subset F of L is afilter if (1) x ~ F, x 
- < y ~ y  ~ F,(2) x,y E F ~ x ^ y  ~ F, and(3) 0 ~F .  Anonemptysubset 
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l o f L i s a n i d e a l i f ( 1 )  x �9 I , y  < - x ~  y �9 I , ( 2 )  x, y �9 I ~ x v  y �9 I, 
and (3) 1 e~ I. Clearly, for anyx  (~  0) e L, x t  =- {y  ~ L : x < - y }  is a filter, 
and for any x (4= 1) e L, x$ --= {y e L: y --< x} is an ideal: the former is 
the pr inc ipa l f i l t e r  generated by x, the latter the princ ipal  ideal generated by x. 

A filter F (ideal l)  i s p r i m e i f x v y  E F ~ x  �9 F o r y  �9 F ( x / x y  �9 
I ~ x  ~ I o r y  �9 I) for a l lx ,  y �9 L. It is easy to check that F C L i s a  
prime filter iff L - F is a prime ideal (equivalently, that I C_ L is a prime 
ideal iff L - I is a prime filter); this establishes a bijective correspondence 
between prime filters and prime ideals in a lattice. An ultrafil ter is a filter 
maximal under C_. [In a distributive lattice, every ultrafilter is prime, and 
in a Boolean algebra, conversely (Bell and Machover, 1977; Davey and 
Priestley, 1990).] 

There is a bijective correspondence between prime filters in a lattice L 
and two-valued lattice homomorphisms on L, defined in the following way. 
To each prime filter P in L, associate the homomorphism h: L --+ 2 given 
by h(x) = 1 r x E P; and to each homomorphism h: L --* 2, associate the 
prime filter h-~(1) in L. Note that this correspondence extends to ortholattices 
and ortholattice homomorphisms, since any lattice homomorphism from 
an ortholattice to a Boolean algebra (2 in particular) preserves ortho- 
complementation. 

3. QUASIDISTRIBUTIVE L A T T I C E S  

For the characterization of a quasidistributive lattice, it is useful to define 
the radical Rad(L) of L to be the intersection of the family of all prime ideals 
in L. In a natural sense, Rad(L) provides an (inverse) measure of the number 
of two-valued homomorphisms on L: the more there are of these, the smaller 
Rad(L), and conversely. 

We now prove our first characterization theorem: 

Theorem 1. Let I be an ideal in a lattice L. Then the following are 
equivalent: 

(1) Rad(L) C_ I. 
(2) Any x ~ I is contained in a prime filter. 
(3) For any x ~ I there is a homomorphism h: L -~ 2 such that h(x) = 1. 

(4) There is a Boolean algebra B and a lattice homomorphism f." L 
B such that f - l ( 0 )  C_ I. 

Proof. (1) r (2). Assuming (1), for any x ~ I, we have x ~ Rad(L), 
i.e., there is a prime ideal Q such that x ~ Q. Then P -- L - Q is a prime 
filter and x e P. Conversely, assuming (2), if x ~ I, then there is a prime 
filter P such that x e P, and Q = L - P is a prime ideal for which x ~ Q. 
It follows that x ~ Rad(L), so that Rad(L) C_ I. 
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(2) r (3) follows immediately from the bijective correspondence 
between two-valued homomorphisms and prime filters. 

(2) ~ (4). Let X be the set of prime filters in L and let B be the power 
set algebra of X. Then the map f: L ~ B given by f ( x )  = {P ~ X: x E P} 
is a lattice homomorphism which, assuming (2), satisfies f - i (0 )  _C I. 

(4) ~ (3). Assuming (4), for any x ~ I we have f ( x )  4 = O. Since B is 
a Boolean algebra, there is a homomorphism g: B ~ 2 such that g( f (x) )  = 
1; thus h = g of:  L --~ 2 satisfies (3). �9 

Remark. Similar arguments to those above establish the (well-known) 
equivalence of the conditions: (1') L is distributive; (2') for any x ~ y there 
is a prime filter containing x but not y; (3') for any x 4: y there is a homomor- 
phism h: L ---) 2 such that h(x) 4: h(y); (4') there is a Boolean algebra B and 
an injective lattice homomorphism f :  L ~ B. 

By analogy with the distributive case, we shall call a lattice L with ideal 
I satisfying the equivalent conditions (1)-(4) of Theorem 1 an I-quasidistribu- 
tive lattice. 

It is immediate from (1) of Theorem 1 that if L is I-quasidistaibutive 
and J D I is another ideal of L, then L is J-quasidistributive. If L is {0}- 
quasidistributive, we shall call it simply a quasidistributive lattice. Clearly 
any sublattice of a quasidistributive lattice will itself be quasidistributive, as 
will any power of a quasidistributive lattice. (Analogous results hold for I- 
quasidistributive lattices when I is nontrivial.) 

Example. A simple quasidistributive lattice (that is not distributive) is 
given by the five-element lattice {0, a, b, c, 1 } with the partial ordering 0 
< a < 1, 0 < b < c < 1. In that case, a B satisfying condition (4) of 
Theorem 1 is the four-element Boolean algebra obtained by identifying b 
and c. 

In connection with condition (4) of Theorem 1, it is natural to attempt 
to characterize those ideals I which are kernels of homomorphisms to Boolean 
algebras. To do this, we introduce the property of I-maximality. 

A filter F in L is said to be 1-maximal if it is maximal with respect to 
the property of disjointness from I: thus {0}-maximal filters are the same as 
ultrafilters. Now we have our second characterization theorem: 

Theorem 2. Let I be an ideal in a lattice L. Then the following are 
equivalent: 

(1) I is the intersection of a (nonempty) family of prime ideals. 
(2) Any x ~ I is contained in a prime filter P such that P n I = Q. 
(3) For any x ~ I there is a homomorphism h: L --) 2 such that h(x) = 

1 and I C__ h-l(0). 
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(4) There is a Boolean algebra B and a lattice homomorphism f :  L 
B such that I = f - l (0) .  

(5) Every/-maximal filter is prime. 

Proof (1) r (2) r (3) are proved in a similar way to the corresponding 
clauses of Theorem 1. 

(2) ~ (4). Let X be the set of prime filters in L disjoint from I and let 
B be the power set algebra of X. Then the map f :  L ~ B given by f(x) = 
{P ~ X: x E P} is a lattice homomorphism which, assuming (2), satisfies I 
= f - l ( 0 ) .  

(4) ~ (5). Assume (4) and let F be an/-maximal  filter in L. Since F 
fq I = ~ and I = f - l (0) ,  it follows that 0 ~ f[F].  The latter (using Zorn's 
lemma) is then contained in an ultrafilter P which (since B is a Boolean 
algebra) is also prime. It is now easily seen that f-l[p] is a prime filter 
containing F and disjoint from I (since 0 ~ P). Since F was assumed to be 
/-maximal, F and f-l[p] coincide, so F is itself prime. 

(5) ~ (2). Assuming (5), let x ~ L By Zorn's lemma, there is an l- 
maximal filter containing x which, by (5), is prime. �9 

Remark. It follows from (1) ~ (5) of this theorem that, if Rad(L) 4: L, 
then every Rad(L)-maximal filter is prime. 

Call a lattice L with ideal I strongly l-quasidistributive if it satisfies 
the equivalent conditions of Theorem 2. Observe that L is strongly {0}- 
quasidistributive iff L is a quasidistributive lattice in the sense defined above. 
It also follows easily from the Remark following Theorem 1 that L is distribu- 
tive iff L is strongly I-quasidistributive for every principal ideal I. 

4. QUASIBOOLEAN ALGEBRAS 

We now focus attention on ortholattices, which of course play a special 
role in quantum mechanics. It is appropriate to call a (strongly) l-quasidistribu- 
tive ortholattice a (strongly) I-quasiBoolean algebra. 

Examples. Ortholattices that define quasiBoolean (but not Boolean) alge- 
bras can be obtained by taking powers and subortholattices of the six-element, 
nondistributive ortholattice {0, a~, a2, b~, bz, 1 } with partial ordering 0 < al 

a 2 < l ,  0 "< b~ < b2 < 1 and orthocomplementation 3_ defined by 0 -L = 
1, al • = b2, a2 • = b~. Making the identifications a~ = a2 and b~ = b2 yields 
a B satisfying condition (4) of Theorem 1 for this ortholattice. 

For any set S of elements in an (ortho)lattice, let vS denote their join, 
provided it exists. A subset A of an ortholattice is called disjointed if a -< 
b • for every pair a, b of distinct elements of A. 
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Our main result is the following general theorem about a class of  quasi- 
Boolean algebras obtainable as maximal quasiBoolean subalgebras of  an 
ortholattice: 

Theorem 3. Let A be a disjointed subset and I an ideal of  an ortholattice 
L such that A n I = O and (vA)" E I. Then the ortholattice defined by 

L(A) = {x ~ L: Va e A, a <-- x or a --< x • 

can be characterized as the largest subortholattice M C_ L satisfying the 
following pair of conditions: 

(a) Every element of  A is an atom of M. 
(b) M is an I n M-quasiBoolean algebra. 

Proof. It is easy to see that L(A) satisfies (a) and that, for each a E A, 
a= generates a prime ideal in L(A). So, defining J = (vA)• N L(A), J is 
the intersection of the family of  prime-in-L(A) ideals {a15 n L(A): a ~ A}. 
It follows from Theorem 2 that L(A) is strongly J-quasiBoolean. Now given 
that (vA) l ~ I, equivalently that (vA)• C L we have J C_ I n L(A). Thus 
L(A) must be I n L(A)-quasiBoolean, satisfying (b). 

To complete the proof, we need only show that if  M C_ L satisfies (a) 
and (b), then M C L(A). To this end, suppose M satisfies (a) and (b), but 
that there is an x E M such that x ~ L(A), i.e., a ;g x and a :~ x • for some 
a ~ A. Since a was assumed to be an atom in M, it follows that x ^ a = 
x I A a = 0 , w h e n c e x  •  • = x v a  • = 1. S i n c e a  ~ I N M ( i n v o k i n g A  
n I = Q),  by (b) (and Theorem 1) there is a prime filter P in M such that 
a ~ P. T h e n s i n c e x  • v a  -L E P a n d x v a  j- ~ P, w e h a v e [ x  • ~ P o r a  j- 

P] and Ix E P o r a  • c P]. Hence Ix • E P a n d x  ~ P] o r a  • E P. 
Recalling that a ~ P, either alternative leads immediately to the contradiction 
0 e P .  �9 

Remark. Observe that if I = (vA)• then the condition A n I = Q~ is 
redundant and L(A) is also the largest subortholattice M C L satisfying (a) 
of the theorem and the requirement that M be a strongly I O M-quasiBool- 
ean algebra. 

5. M A X I M A L  Q U A S I B O O L E A N  S U B A L G E B R A S  OF 
D E F I N I T E  P R O P E R T I E S  

We now show how quasiBoolean algebras emerge as the natural struc- 
tures for representing the definite properties of quantum systems. Our final 
task in the next section will be to use Theorem 3 to derive the different 
proposals in the literature for identifying those definite properties. 
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Consider a quantum system represented by a Hilbert space H whose 
state is represented at some moment by some (positive, Hermitian, trace- 
one) "density" operator D on H. (For simplicity, we assume throughout that 
H is finite dimensional.) Each projection operator P on H has eigenvalues 1 
and 0 and defines a possible property, or proposition, of the system in state 
D, where the value 1 can be read as "true" and 0 as "false." (Henceforth, 
we reserve the notation P for projection operators, not to be confused with 
prime filters.) There is a well-known bijective correspondence between the 
set of projections on H and the set of subspaces of H. The set of all subspaces 
(hence projections) of H forms a complete, atomic ortholattice LH with the 
partial ordering given by subspace inclusion, the meet of two subspaces given 
by their intersection, the join by the subspace they together generate, and 
where the orthocomplement of a subspace is the subspace orthogonal to it. 

The following question now arises. Of the possible properties of the 
system, represented by LH, which can be regarded as actually having simulta- 
neously well-defined values (0 or 1) in state D? That is, which of the proposi- 
tions in Ln can together be regarded as determinately true or false of the 
system when it is in state D? 

Let Lo denote the subortholattice consisting of elements of LH that have 
simultaneously definite values in state D. Then the different truth valuations 
on the set of properties in LD are given by the various homomorphisms h: 
LD ~ 2. If H has nontrivial dimension, it is well known (and easy to see) 
that there do not exist any two-valued homomorphisms on Ln; equivalently, 
that Rad(LH) = LM. Thus LH itself is not a possible candidate for LD, and 
we must seek some proper subortholattice of LH in order to represent the 
(simultaneously) definite properties of our quantum system. 

Clearly what must be done is to choose LD C LI4 so that its radical 
Rad(LD) is small enough to guarantee the existence of sufficiently many two- 
valued homomorphisms (i.e., prime filters) to capture the various possible 
truth valuations of the propositions in Lo. By Theorem 1, we see that a natural 
mathematical way to restrict Rad(LD) is to demand that LD form an I N Lo- 
quasiBoolean algebra with respect to some ideal I of Ln. We now show that 
one physically natural choice of I is forthcoming. 

Consider the subset ID of all projections P in LH that are prescribed zero 
probability of being found on measurement to have value 1 in state D, i.e., 
those projections for which Tr(PD) = 0. (We shall use the same notation for 
projection operators on H and the lattice elements in LH to which they 
correspond, since no confusion will arise.) If PD is the set of all spectral 
projections of D corresponding to its nonzero eigenvalues, then it is easy to 
see that I D = (vPo)• so that Io is indeed an ideal of LH. 

Now for any P in Lo that gets attributed nonzero probability of being 
found on measurement to have value 1 in state D, i.e., for any P f~ ID f'q 
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LD, there should exist a homomorphism h: L o ---> 2 sending P to 1. For 
otherwise it will not be possible to recover the probabilities prescribed by D 
for measurement results as measures over the set of possible valuations 
(homomorphisms into 2) on the subortholattice Lt). Since this subortholattice 
is supposed to represent the definite properties of our quantum system, it 
must have sufficient valuations so as to be consistent with what values it is 
possible to observe for the properties contained in Lb. Invoking Theorem 1, 
we see that the physically natural requirement on Lt) C LH is, therefore, that 
Lt) be an ID f3 Lt)-quasiBoolean algebra. 

Indeed, it is natural to impose on Lt) that it be as large a subortholattice 
of LH as possible consistent with being an ID f-) Lo-quasiBoolean algebra. 
For the problem at issue should really be one of discerning how much 
we can consistently assert about the simultaneously definite properties of a 
quantum system in an arbitrarily given state D. So the requirement becomes 
that Lt) be a maximal It) fq LD-quasiBoolean subalgebra of L~. 

6. RECOVERING PROPOSALS FOR A QUANTUM SYSTEM'S 
PROPERTIES 

In general, there is no unique LD satisfying the condition just stated, as 
shown by the various existing proposals in the literature for the set of definite 
properties of a quantum system--which all (as we shall shortly see) realize 
maximal ID N LD-quasiBoolean subalgebras of L~,. But with the aid of 
Theorem 3, it is now possible to derive each of these proposals, starting with 
different requirements on what elements of LH should occur as atoms in LD. 

In all the proposals we shall consider, these atoms are not chosen arbi- 
trarily, but are picked out by the state D of the system (hence our notation 
LD). This is natural, since one wants the definite properties of a quantum 
system to be linked in some way to the dynamical evolution of its quantum 
state D. However, there is no unique way to set up such a link, i.e., to use 
D to pick out a set of atoms for LD. Differences in the choice of atoms picked 
out by D reflect differences among the proposals as to what properties should 
be ascribed to a quantum system after it is subjected to, for example, a 
measurement interaction. Some indication of how these differences show up 
will be given after we have derived the various proposals using Theorem 3. 

I. Suppose, first, that we require that the element VPD be an atom of 
LD. Then since {vPt)} fq It) = • and (VPD) • E ID, Theorem 3 yields 

LD = LI~({VPD}) = {P ~ L~I: VPD <-- P or vP D <-- P• } 

This (maximal) IDA LD-quasiBoolean subalgebra is easily seen to be gener- 
ated by VPD and all atoms of Ln contained in (vPt)) • Furthermore, since ID 
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= (vPo)~$, we know from the Remark following Theorem 3 that the LD 
above is in fact a strongly IDA Lo-quasiBoolean algebra. 

Since ID = (VPD)• an equivalent definition of this LD is 

L D = {P E LH: Tr(PD) = 1 or O} 

which therefore amounts to the proposal that all and only those projections 
with particular values (0 or 1) that are certain to be found on measurement 
in state D correspond to definite properties in that state. This is the "orthodox" 
proposal advocated by von Neumann (1955, pp. 213-7) and, more explicitly, 
by Dirac (1958, pp. 46-7). It is perhaps too conservative a proposal, since 
it is what forces yon Neumann to resort to his projection postulate to account 
for the definite results of measurements (not to mention a definite life state 
for SchrOdinger's cat). It is therefore not surprising that other proposals have 
been offered. 

II. Suppose, instead, that we require each individual (nonzero eigen- 
value) spectral projection of D in the set PD to be an atom of Lo. Then, since 
we still have (vPo) z e Io and further Po N ID = O, and since the set Po 
is disjointed by definition, Theorem 3 yields 

LD = LH(PD) = {P ~ LH: VP e PD, P - < P o r P - - - P •  

which is readily verified (Clifton, 1995) to be the subortholattice of LH 
generated by the elements of the set PD and all atoms in (VPD) • (again, it 
is strongly lo 17 Lo-quasiBoolean as well). So we obtain a different maximal 
Io A Lo-quasiBoolean subalgebra from our first example, but the difference 
only shows up in the different sets of atoms picked out by D that determine 
the two subalgebras via Theorem 3. 

LH (PD) is essentially the proposal made by van Fraassen (1991 ), Kochen 
(1985), and Dieks (1989), and is supposed to allow one to attribute enough 
properties to quantum systems and their subsystems (which will, generally, 
have mixed states, i.e., states for which D 2 4~ D) that von Neumann's ad hoc 
projection postulate becomes unnecessary. 

Note that if D represents a pure state, so that D 2 = D, then D becomes 
simply a one-dimensional projection operator, and the two proposals 
LtI({VPD} ) and L~(Po) coincide (since {vPo} = Po = {D}). 

I IL Finally, there is another proposal for LD due to Bub and Clifton 
(1995), which differs from these first two even in the case when D is pure. 
This proposal arguably recovers, as special cases, what Bohr's (1958) ortho- 
doxy and Bohm's (1952) hidden variables would allow us to say about the 
definite properties of a (generally, composite) quantum system in a pure 
state D. 
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Let {Ri } be the set of spectral projections of some observable represented 
by the Hermitian operator R, and (for pure D) define DRi = (D v Ri -L) A R~ 
for all i. Let {DRj } be the set of all nonzero DRy. Since the set {Ri} is 
disjointed, so is the set {DRj}. And, in this (pure) case, ID = D•  So if we 
demand that each element of the set {DR~ } occur as an atom in Lo, then 
since {D~j} fq Iv = Q and (vj DRj) • e Io, Theorem 3 leaves us with 

Lt) = LN({DRj }) = {P E LH: Vj, DRj <--- P or DRj ----- P• 

which (like our previous example) is easily verified to be the subortholattice 
generated by the set {DR~ } and all atoms of LH in (vj DRj) • [In this case, 
we do not generally have It) = (vj DRj)• but Lt) will always be strongly 
(vj DRj)-L ~ f) Lo-quasiBoolean.] 

Lt~({DRj }) will only agree with the first two proposals described above 
if D is an eigenstate of R, for then the set {DRi} consists of only D itself. 

Whatever D is, it will always be the case that LH({DR;}) will include 
the set {Ri}. The idea of this final proposal is then to say that, however the 
(pure) state D evolves, there is always one "preferred" observable R which 
has definite values at all times. If we choose R to be position in configuration 
space, it becomes possible to recover Bohm's hidden variable theory. On the 
other hand, if we choose R throughout the duration of a measurement interac- 
tion to be the macroscopic pointer observable on the classical measurement 
device used, we recover Bohr's views about how the properties one can 
meaningfully ascribe to a measured system depend on its context of measure- 
ment. (See Bub and Clifton (1995) for further discussion.) 

It is clear that the physical differences between these different proposals 
for L o reside solely in the different choices they make for the atoms, or 
equivalently (in these cases) the generators of Lb. Once these are fixed, the 
different proposals may be derived quite independently of  the details of 
Hilbert space just as a consequence of our general theorem of Section 4 
concerning quasiBoolean algebras obtainable as maximal subalgebras of an 
ortholattice. In the states D where the property ascriptions of the proposals 
differ, these differences will show up, in particular, as differences about what 
properties it is appropriate to attribute to quantum systems after they have 
undergone a measurement interaction. 

To illustrate this, consider a simple case of ideal measurement of  one 
quantum system, an "object" O represented by Hilbert space Ho, by another, 
an "apparatus" A represented by Ha. The initial state of the composite system 
O + A will unitarily evolve into a post-measurement state of the form q~ = 
Ei cioi Q ai e Ho | HA (= HOA), where the {ci} are expansion coefficients, 
the {oi} eigenstates of the observable O measured on the object system, and 
the {a/} eigenstates of the "pointer" observable A of the apparatus. 
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Consider, first, properties that get attributed to the composite system O 
+ A, given its (pure) state P .  (the projection onto the subspace generated 
by ~).  In this case (as already noted), there is no difference between the 
first two proposals in the properties they attribute to O + A, i.e., both will 
regard those properties as represented by projections P such that Tr(PP.) = 
1 or 0. Generally none of these properties will correspond to projections that 
are the tensor product of a projection on Ho and one on HA, so it will not 
be possible to say that the "object" and "apparatus" parts of the composite 
system have definite (nontrivial) properties--only that the composite system 
itself does. 

But suppose we take the "preferred" observable R in the third proposal 
above to be I | A (where I is the identity operator on Ho)--either on the 
grounds that the apparatus pointer observable is an observable of a classical 
system which ought to be regarded a priori as having a definite value (Bohr), 
or because measurements with this pointer observable are ultimately reducible 
to measurements of position, which should always be regarded as having a 
definite value for any system (Bohm). Then the set {DRj} (with D = P . )  
will be exactly those propositions picked out by the one-dimensional projec- 
tions onto the subspaces generated by the vectors {oi | ai} in the expansion 
of 'It, and so these propositions will automatically get included in 
L~oa({DRj }). On this third proposal, then, it will make sense to say that the 
combined system has the property that its "object" part has a definite value 
for the observable O and its "apparatus" part has a definite pointer value. 
Note how this consequence of the third proposal follows almost directly from 
the choice of atoms it makes. 

From the perspective of the composite system, it would seem that only 
the third proposal yields a satisfactory solution of the measurement problem, 
i.e., the problem of accounting for why quantum measurements yield definite 
results. But when we look at the two component systems O and A as separate 
systems, the second proposal for LD (due to van Fraassen, Kochen, Dieks) 
will attribute the observables O and A definite values (at least when there is 
no degeneracy among the numbers {Icil 2}). This is because the component 
systems will be in mixed states Do and DA determined by P ,  through "reduc- 
tion of the density matrix." Thus (in the absence of degeneracy) Do (DA) 
will have its (nonzero eigenvalue) spectral projections given by the projections 
onto the rays generated by the set {oi} ({ai}), and therefore LDo = 
LHo(PDo) [LD A = LHA(PDA)] will automatically include the corresponding 
propositions--just as a consequence of how this proposal chooses its atoms. 

On the other hand, the first orthodox proposal (of von Neumann and 
Dirac) still makes a "coarse-grained" choice of atoms for Loo and Loa (viz. 
just vPoo and VPoa), and so is unable to say anything more than that the 
projections of the subsystem O (A) that get attributed probability 1 or 0 by 



2420 Bell and Clifton 

Do (DA) define its definite properties. In particular, if the {Oi} (or {a/}) 
constitute a basis of Ho (HA), then nothing but the trivial propositions 0 and 
I will get definite truth values for subsystem O (A). 

In sum, what this simple illustration shows is that the choice of which 
elements one requires to be atoms in the (maximal) Io n Lo-quasiBoolean 
subalgebra of definite properties of a quantum system makes all the difference 
to the account one gives of the properties that are instantiated in typical 
quantum measurement situations. In particular, the second and third proposals 
differ in an interesting way regarding the relation between the definite proper- 
ties of the parts of a quantum system and the definite properties of the whole, 
though both manage to get beyond the measurement problem inherent in the 
first (orthodox) proposal by making a more "fine-grained" choice of atoms. 

7. CONCLUSION 

We have shown how to define a natural notion of "quasidistributive 
lattice," intermediate in nature between a lattice and a Boolean algebra, and 
given a number of alternative characterizations of such lattices, as well as 
of strongly quasidistributive lattices. These new notions, though completely 
general and independent of Hilbert space, serve to illuminate what seem 
initially to be quite different proposals in the literature for the set of definite 
properties of a quantum system in a given state. 

In particular, we showed that these proposals differ physically only in 
regard to what the atoms of the maximal quasiBoolean subalgebra they select 
to represent definite properties should be taken to be. Once these are fixed, 
the subalgebra selected by each proposal is determined uniquely and indepen- 
dently of the details of Hilbert space. We hope that in bringing all these 
proposals together in this way, we thereby shed light on the problem of 
deciding which (if any) of the different proposals is best suited to the task 
of representing the definite properties of a quantum system, particularly in 
view of the quantum measurement problem. 
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